Given an increasing sequence of integers $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$, the E-transform produces a sequence of the same length, $b_{1}, b_{2}, b_{3}, \ldots, b_{k}$ such that

- $b_{1}=a_{1}$
- for $j>1, b_{j}$ is the only integer $a_{j-1}<b_{j} \leq a_{j}$, which is divisible bya $a_{j}-a_{j-1}$.

For example, from $S=0,1,4,9,16,25,36,49$ one gets $E(S)=0,1,3,5,14,18,33,39$.
A sequence S such that $E(S)=S$ is called an eigensequence. For instance, $S=2,3,4,6,8,12,16,18,20$ is an eigensequence.

Given integers a_{1} and a_{n}, how many eigensequences (of any length) start with a_{1} and end with a_{n} ?

Input

Input has many data lines, followed by a terminating line. Each line has two integers, a_{1} and a_{n}. If $a_{1}<n$, it's a data line. Otherwise it's a terminating line that should not be processed. On each line, $0 \leq a_{1} \leq a_{n} \leq 44$. This guarantees that each output fits into 32 bit integer.

Output

For each data line, print a line with a_{1}, a_{n}, and x, where x is the number of eigensequences (of any length) that start with a_{1} and end with a_{n}.

Sample Input

03
57
28
00

Sample Output

033
571
2812

