The creator of the universe works in mysterious ways. But he uses a base ten counting system and likes round numbers.

Everyone knows about base 2 (binary) integers and base 10 (decimal) integers, but what about base -2? An integer n written in base -2 is a sequence of digits $\left(b_{i}\right)$, writen right-to-left. Each of which is either 0 or 1 (no negative digits!), and the following equality must hold.

$$
n=b_{0}+b_{1}(-2)+b_{2}(-2)^{2}+b_{3}(-2)^{3}+\ldots
$$

The cool thing is that every integer (including the negative ones) has a unique base $\mathbf{- 2}$ representation, with no minus sign required. Your task is to find this representation.

Input

The first line of input gives the number of cases, N (at most 10000). N test cases follow. Each one is a line containing a decimal integer in the range from $-1,000,000,000$ to $1,000,000,000$.

Output

For each test case, output one line containing 'Case \#x:' followed by the same integer, written in base -2 with no leading zeros.

Sample Input

4
1
7
-2
0

Sample Output

Case \#1: 1
Case \#2: 11011
Case \#3: 10
Case \#4: 0

