Imagine an infinite table with rows and columns numbered using the natural numbers. The following figure shows a procedure to traverse such a table assigning a consecutive natural number to each table cell:

This enumeration of cells can be used to represent complex data types using natural numbers:

- A pair of natural numbers (i, j) is represented by the number corresponding to the cell in row i and column j. For instance, the pair (3,2) is represented by the natural number 17; this fact is noted by $P_{2}(3,2)=17$.
- The pair representation can be used to represent n-tuples. A triplet (a, b, c) is represented by $P_{2}\left(a, P_{2}(b, c)\right)$. A 4 -tuple (a, b, c, d) is represented by $P_{2}\left(a, P_{2}\left(b, P_{2}(c, d)\right)\right)$. This procedure can be generalized for an arbitrary n :

$$
P_{n}\left(a_{1}, \ldots, a_{n}\right)=P_{2}\left(a_{1}, P_{n-1}\left(a_{2}, . ., a_{n}\right)\right),
$$

where P_{n} denotes the n-tuple representation function, $n \geq 2$. For example $P_{3}(2,0,1)=12$.

- A list of arbitrary length $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is represented by

$$
L\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=P_{2}\left(n, P_{n}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

For example, $L(\langle 0,1\rangle)=12$.
The Association of Convex Makers (ACM) uses this clever enumeration scheme in a polygon representation system. The system can represent a polygon, defined by integer coordinates, using a natural number as follows: given a polygon defined by a vertex sequence $\left\langle\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\rangle$ assign the natural number:

$$
L\left(\left\langle P_{2}\left(x_{1}, y_{1}\right), \ldots, P_{2}\left(x_{n}, y_{n}\right)\right\rangle\right)
$$

ACM needs a program that, given a natural numbers that represents a polygon, calculates the area of the polygon. It is guaranteed that the given polygon is a simple one, i.e. its sides do not intersect.

As an example of the problem, the triangle with vertices at $(1,1),(2,0)$ and $(0,0)$ is codified with the number 2141 . The area of this triangle is 1.

Input

The input consists of several test cases. Each test case is given in a single line of the input by a natural number representing a polygon. The end of the test cases is indicated with ' $*$ '.

Output

One line per test case, preserving the input order. Each output line contains a decimal number telling the area of the corresponding encoded polygon. Areas must be printed with 1 decimal place, truncating less significative decimal places.

Sample Input

2141
206
157895330
*

Sample Output

1.0
0.5
1.0

