This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of $4 n+1$ numbers. Here, we do only a bit of that.

An \mathbf{H}-number is a positive number which is one more than a multiple of four: $1,5,9,13,17,21, \ldots$ are the \mathbf{H}-numbers. For this problem we pretend that these are the only numbers. The \mathbf{H}-numbers are closed under multiplication.

As with regular integers, we partition the \mathbf{H}-numbers into units, H-primes, and \mathbf{H}-composites. 1 is the only unit. An \mathbf{H}-number h is \mathbf{H}-prime if it is not the unit, and is the product of two H-numbers in only one way: $1 \times h$. The rest of the numbers are \mathbf{H}-composite.

For examples, the first few \mathbf{H}-composites are: $5 \times 5=25$, $5 \times 9=45,5 \times 13=65,9 \times 9=81,5 \times 17=85$.

Your task is to count the number of \mathbf{H}-semi-primes. An \mathbf{H}-semi-prime is an \mathbf{H}-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are \mathbf{H}-semi-primes. $125=5 \times 5 \times 5$ is not an H-semi-prime, because it's the
 product of three \mathbf{H}-primes.

Input

Each line of input contains an \mathbf{H}-number $\leq 1,000,001$. The last line of input contains 0 and this line should not be processed.

Output

For each inputted \mathbf{H}-number h, print a line stating h and the number of \mathbf{H}-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

210
855
78962

