You will be given a list of n integers, $<a_{1} a_{2} a_{3} \ldots a_{n}>$ and an integer k. Find out the number of ways of choosing 2 integers (a_{i}, a_{j}), such that $a_{i} \leq a_{j}$ and $1 \leq i, j \leq n$ and $i \neq j$ and $\left(a_{i}+a_{j}\right)$ is divisible by k. Every pair must be distinct. Two pairs, (a, b) and (c, d), are equal if a is equal to c and b is equal to d.

Suppose we are given 5 integers $<41223>$ and $k=1$. There are 7 ways of choosing different pairs that meets the above restrictions: $(1,2)(1,3)(1,4)(2,2)(2,3)(2,4)(3,4)$.

Input

The first line of input contains an integer T that determines the number of test cases. Each test case contains two lines. The first line consists of two integers n and k. The next line contains n integers. The i-th integer gives the value of a_{i}.

Output

For each test case, output the case number followed by the number of ways to choose the pairs.

Constraints

- $T<100$
- $1<n<100001$
- $0<k<501$
- $\left|a_{i}\right|<10000001$ for any i

Sample Input

2
51
41223
52
41223

Sample Output

Case 1: 7
Case 2: 3

