You will be given a list of n integers, $a_1 \ a_2 \ a_3 \dots a_n >$ and an integer k. Find out the number of ways of choosing 2 integers (a_i, a_j) , such that $a_i \le a_j$ and $1 \le i, j \le n$ and $i \ne j$ and $(a_i + a_j)$ is divisible by k. Every pair must be distinct. Two pairs, (a, b) and (c, d), are equal if a is equal to c and b is equal to d.

Suppose we are given 5 integers < 41223 > and k = 1. There are 7 ways of choosing different pairs that meets the above restrictions: (1,2)(1,3)(1,4)(2,2)(2,3)(2,4)(3,4).

Input

The first line of input contains an integer T that determines the number of test cases. Each test case contains two lines. The first line consists of two integers n and k. The next line contains n integers. The i-th integer gives the value of a_i .

Output

For each test case, output the case number followed by the number of ways to choose the pairs.

Constraints

- T < 100
- 1 < n < 100001
- 0 < k < 501
- $|a_i| < 10000001$ for any i

Sample Input

2 5 1

4 1 2 2 3

5 2

4 1 2 2 3

Sample Output

Case 1: 7

Case 2: 3