
Sorting is one of the most used operations in real life, where Computer Science comes into act. It is
well-known that the lower bound of swap based sorting is nlog(n). It means that the best possible
sorting algorithm will take at least O(nlog(n)) swaps to sort a set of n integers. However, to sort a
particular array of n integers, you can always find a swapping sequence of at most (n− 1) swaps, once
you know the position of each element in the sorted sequence.

For example consider four elements <1 2 3 4>. There are 24 possible permutations and for all
elements you know the position in sorted sequence.

If the permutation is <2 1 4 3>, it will take minimum 2 swaps to make it sorted. If the sequence
is <2 3 4 1>, at least 3 swaps are required. The sequence <4 2 3 1> requires only 1 and the sequence
<1 2 3 4> requires none. In this way, we can find the permutations of N distinct integers which will
take at least K swaps to be sorted.

Input

Each input consists of two positive integers N (1 ≤ N ≤ 21) and K (0 ≤ K < N) in a single line.
Input is terminated by two zeros. There can be at most 250 test cases.

Output

For each of the input, print in a line the number of permutations which will take at least K swaps.

Sample Input

3 1

3 0

3 2

0 0

Sample Output

3

1

2


