A permutation is a bijection from a set X onto itself. If X is finite, the elements of X are often numbered $1, 2, 3, \ldots n$. A permutation of a set with five elements is often denoted by

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{array}\right)$$

meaning the element 1 is mapped to the element 3 of the set, the element 2 is mapped to the element 2 and so on and so forth. Another way of denoting permutations is to use cycle notation. Cycle notation is not necessarily unique. The following cycle

means that the element 2 is mapped to the element 4, the element 4 is mapped to the element 7 and the element 7 is mapped to the element 2. The cycle above could also be written

The product of several cycles is evaluated from **right** to **left**. The above permutation can be written as

(1354)(1)

A permutation can be written uniquely as the product of cylces

$$\begin{pmatrix} 1 & 2 & \dots & n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} = (1)^{a_1} (12)^{a_2} (123)^{a_3} (1234)^{a_4} \dots (1 \dots n)^{a_n}$$

if $0 \le a_i \le i-1$ holds for each exponent a_i . The example permutation can be uniquely written as

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (1)^{0} (12)^{1} (123)^{2} (1234)^{2} (12345)^{2}$$

Your task is to compute the a_i 's of a given permutation.

Input

The input consists of several test cases. Each test case consists of three lines. The first line contains the number n, $1 \le n \le 200000$. The second line contains the elements from 1 to n. The third line contains a mapping for every element from the second line.

Output

For each test case there should be one line of output. Print all the a_i 's on a single line separated by one space in the order $a_1 \dots a_n$

Sample Input

```
5
1 2 3 4 5
3 2 5 1 4
4
1 2 3 4
3 4 1 2
```

Sample Output

```
0 1 2 2 2 0 0 0 0 2
```