A permutation is a bijection from a set X onto itself. If X is finite, the elements of X are often numbered $1,2,3, \ldots n$. A permutation of a set with five elements is often denoted by

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 5 & 1 & 4
\end{array}\right)
$$

meaning the element 1 is mapped to the element 3 of the set, the element 2 is mapped to the element 2 and so on and so forth. Another way of denoting permutations is to use cycle notation. Cycle notation is not necessarily unique. The following cycle
means that the element 2 is mapped to the element 4 , the element 4 is mapped to the element 7 and the element 7 is mapped to the element 2 . The cycle above could also be written

The product of several cycles is evaluated from right to left. The above permutation can be written as

$$
(53)(51)(54)
$$

(1) (1354)

A permutation can be written uniquely as the product of cylces

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right)=(1)^{a_{1}}(12)^{a_{2}}(123)^{a_{3}}(1234)^{a_{4}} \ldots(1 \ldots n)^{a_{n}}
$$

if $0 \leq a_{i} \leq i-1$ holds for each exponent a_{i}. The example permutation can be uniquely written as

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 5 & 1 & 4
\end{array}\right)=(1)^{0}(12)^{1}(123)^{2}(1234)^{2}(12345)^{2}
$$

Your task is to compute the a_{i} 's of a given permutation.

Input

The input consists of several test cases. Each test case consists of three lines. The first line contains the number $n, 1 \leq n \leq 200000$. The second line contains the elements from 1 to n. The third line contains a mapping for every element from the second line.

Output

For each test case there should be one line of output. Print all the a_{i} 's on a single line separated by one space in the order $a_{1} \ldots a_{n}$

Sample Input

5
12345
32514
4
1234
3412

Sample Output

```
01222
0002
```

