Assume you have a square of size n that is divided into $n \times n$ positions just as a checkerboard. Two positions (x_{1}, y_{1}) and (x_{2}, y_{2}), where $1 \leq x_{1}, y_{1}, x_{2}, y_{2} \leq n$, are called "independent" if they occupy different rows and different columns, that is, $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. More generally, n positions are called independent if they are pairwise independent. It follows that there are n ! different ways to choose n independent positions.

Assume further that a number is written in each position of such an $n \times n$ square. This square is called "homogeneous" if the sum of the numbers written in n independent positions is the same, no matter how the positions are chosen. Write a program to determine if a given square is homogeneous!

Input

The input contains several test cases.
The first line of each test case contains an integer $n(1 \leq n \leq 1000)$. Each of the next n lines contains n numbers, separated by exactly one space character. Each number is an integer from the interval [-1000000,1000000].

The last test case is followed by a zero.

Output

For each test case output whether the specified square is homogeneous or not. Adhere to the format shown in the sample output.

Sample Input

2
12
34
3
134
8 6-2
-3 40
0

Sample Output

homogeneous
not homogeneous

