
We want to solve the classical prob-
lem of obtaining a given target
number starting from a set of initial
numbers according to the following
rules:

• All numbers involved in the
problem are positive integers,
and so must be any inter-
mediate result obtained for
any operation. Thus, oper-
ations that lead to non in-
teger or non positive num-
bers are strictly forbidden
(we shall not consider trunca-
tion or rounding results, nor
anything else like that).

• We can do any of the four
elemental arithmetical opera-
tions: addition, multiplication, subtraction, and division.

• Each number may be used once at most: when we take two numbers and operate them, these
numbers may not be used again in further operations (but the result of this operation may, and
same considerations apply to this new number).

• There is no obligation to make use of all of the initial numbers.

We shall make the following assumptions on the input data:

• For any target number T , it will always hold that: 0 < T < 2000.

• For any initial number I, it will always hold that: 0 < I < 200.

• There will always be at least two initial numbers and seven at most.

• We shall not consider trivial problem cases, i.e. cases in which the target number is already
contained in the initial ones.

In order to make unique the solution provided by the program, we shall also make the following
assumptions on the solution that we will consider as correct:

The program should provide the solution that reaches the target in the minimum number of opera-
tions. If there is more than one solution with the minimum number of operations, we will decide which
one to take according to the characteristics of the first operation in which they differ. The next rules
will apply.

• For two operations that are actually the same one, it will be preferred the one whose left-side
operand is greater than, or equal to, the right-side operand. For example, operation “10×5 = 50”
will take priority over “5× 10 = 50”.

• For operations involving two different operators, it will be preferred the one whose operator has
the highest precedence, defined as follows:

– Addition (highest)

– Multiplication

– Subtraction

– Division (lowest)

• For operations with the same operator, it will be preferred the one involving the number whose
position is lower in the order in which they were given in the input (it appears first). If this
first number may appear in two different operations of same precedence, same criterion should be
applied for the second operand. New numbers generated by operations are assumed to be placed
at the beginning of this ordered list.

Input

The input consists of a set of lines. Each line represents a test case, and it will be given in the following
format:

T N I1 . . . IN

T is the target number, N is the number of initial numbers, and I1 . . . IN are the initial numbers
themselves. All numbers are separated by a single blank space. There will be no trailing/leading blank
spaces at the beginning/end of any input line. A final line with a single zero marks the end of the
input. This last line must not be processed.

Output

For each input case (input line), the program should produce a line with the message:

No solution

if the target number cannot be obtained from the initial numbers, or a set of lines with the sequence
of operations that leads from the initial numbers to the target, taking into consideration the previous
criteria. Each operation must be expressed in the following format:

left operand operator right operand = result

where left operand and right operand represent the numbers involved in the operation, result is the
result of the operation, and operator is a single character that represents the operation carried out,
and it must be taken from the following ones:

‘+’ : addition
‘x’ : multiplication
‘-’ : subtraction
‘/’ : division

For each input case, the last line of its solution must end with a ‘<-’ symbol, indicating that this is
the last operation that gives the target number as result. In all cases, there must be one blank space
(and only one) between each printed item and the following one. There should be no leading/trading
blank spaces at the beginning/end of any output line. Each line must end with an end of line mark,
and there should appear no blank lines at the output.

Sample Input

811 6 7 15 19 25 2 3

911 6 1 2 3 4 5 6

1897 7 33 2 11 25 7 17 13

911 7 7 11 23 27 17 7 2

0

Sample Output

15 + 7 = 22

22 x 19 = 418

418 x 2 = 836

836 - 25 = 811


