Given is a function $f: 0 . . N \longrightarrow$ $0 . . N$ for a non-negative N and a non-negative integer $n \leq N$. One can construct an infinite sequence $F=f^{1}(n), f^{2}(n), \ldots f^{k}(n) \ldots$, where $f^{k}(n)$ is defined recursively as follows: $f^{1}(n)=f(n)$ and $f^{k+1}(n)=f\left(f^{k}(n)\right)$.

It is easy to see that each such sequence F is eventually periodic, that is periodic from some point onwards, e.g $1,2,7,5,4,6,5$ Given non-negative integer $N \leq$ $11000000, n \leq N$ and f, you are

FEBIODICTABLE OF RARE'ANDENDANGEKED SPECIES
 to compute the period of sequence F.

Input

Each line of input contains N, n and the a description of f in postfix notation, also known as Reverse Polish Notation (RPN). The operands are either unsigned integer constants or N or the variable x. Only binary operands are allowed: '+' (addition), '*' (multiplication) and '\%' (modulo, i.e. remainder of integer division). Operands and operators are separated by whitespace. The operand \% occurs exactly once in a function and it is the last (rightmost, or topmost if you wish) operator and its second operand is always N whose value is read from input. The following function:
$2 \mathrm{x} * 7+\mathrm{N} \%$
is the RPN rendition of the more familiar infix ' $(2 * x+7) \% \mathrm{~N}$ '. All input lines are shorter than 100 characters. The last line of input has N equal ' 0 ' and should not be processed.

Output

For each line of input, output one line with one integer number, the period of F corresponding to the data given in the input line.

Sample Input

```
10 1 x N %
11 1 x x 1 + * N %
1728 1 x x 1 + * x 2 + * N %
1728 1 x x 1 + x 2 + * * N %
100003 1 x x 123 + * x 12345 + * N %
O 0 0 N %
```


Sample Output

