You are given a set of N integers. You can take K different elements from them to make a group. Two groups will be different if there is at least one element which is not common to both. For example, if there are 4 elements a, b, c, d and you are asked to take two elements then ab, ad, bc, cd are all valid and different groups. A grouping system is complete if for a particular K, number of different groups is the maximum. In the former case, $\{\mathrm{ab}, \mathrm{bc}, \mathrm{cd}, \mathrm{bd}, \mathrm{ad}, \mathrm{ac}\}$ is a complete grouping system.

For a particular complete grouping system, the fitness is calculated in the following way

1. Each group of a grouping system contributes a part the multiplication of all numbers of that group
2. Contribution from all groups are added
3. The fitness is equivalent to Total Contribution $\bmod M, M$ is the bounding parameter

In our example, for $K=2$, the fitness is $F_{2}=(a b+b c+c d+b d+a d+a c) \bmod M$. If $K=1$, then fitness is $F_{1}=(a+b+c+d) \bmod M$.

Here, in this problem you have to find the complete grouping system with maximum fitness.

Input

Each test case starts with two positive integer $N(2 \leq N \leq 1000)$ and $M\left(1 \leq M<2^{31}\right)$. In next few lines there will be N positive integers. Each integer will be at best 1000 . Input will be terminated by a case where $N=M=0$.

Output

For each test case, print in a line the maximum fitness possible for a grouping system.

Sample Input

410
1234
4100
1234
46
1234
00

Sample Output

5
50
5

