Let $G=(V, E)$ be a connected graph without loops and multiple edges, where V and E are the vertex and edge, respectively, sets of G. For any two vertices $u, v \in V$, the distance between vertices u and v in G is the number of edges in a shortest $u-v$ path. A shortest path between u and v is called a $u-v$ geodesic. Let $I(u, v)$ denote the set of vertices such that a vertex is in $I(u, v)$ if and only if it is in some $u-v$ geodesic of G and, for a set $S \subseteq V, I(S)=\bigcup_{u, v \in S} I(u, v)$. A vertex set D in graph G is called a geodetic set if $I(D)=V$. The geodetic set problem is to verify whether D is a geodetic set or not.

We use Figure 3 as an example. In Figure 3, $I(2,5)=\{2,3,4,5\}$ since there are two shortest paths between vertices 2 and 5 . We can see that vertices 3 and 4 are lying on one of these two shortest paths respectively. However, $I(2,5)$ is not a geodetic set since $I(2,5) \neq V$. Vertex set $\{1,2,3,4,5\}$ is intuitively a geodetic set of G. Vertex set $D=\{1,2,5\}$ is also a geodetic set of G since vertex 3 (respectively, vertex 4) is in the shortest path between vertices 1 and 5 (respectively, vertices 2 and 5). Thus, $I(D)=V$. Besides, vertex sets $\{1,3,4\}$ and $\{1,4,5\}$ are also geodetic sets. However, $D=\{3,4,5\}$ is not a geodetic set since vertex 1 is not in $I(D)$.

Input

The input file consists of a given graph and several test cases. The first

Figure 3: A graph G.
 line contains an integer n indicating the number of vertices in the given graph, where $2 \leq n \leq 40$. The vertices of a graph are labeled from 1 to n. Each vertex has a distinct label. The following n lines represent the adjacent vertices of vertex $i, i=1,2, \ldots, n$. For example, the second line of the sample input indicates that vertex 1 is adjacent with vertices 2 and 3 . Note that any two integers in each line are separated by at least one space. After these n lines, there is a line which contains the number of test cases. Each test case is shown in one line and represents a given subset D of vertices. You have to determine whether D is a geodetic set or not.

Output

For each test case, output 'yes' in one line if it is a geodetic set or 'no' otherwise.

Sample Input

5

23
134
125
25
34
6
12345
125
24
134
145
345

Sample Output

