Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows:

Figure 1: Michael's Tiling Block with parameters (3,2).
Each tiling block is associated with two parameters (l, m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l, m)-block is carved with l caving dens on the left and m dens on the middle.

It is easily seen that an (l, m)-block can be tiled upon another (l, m)-block. However, this is not the only way for us to tile up the blocks. Actually, an (l, m)-block can be tiled upon another $\left(l^{\prime}, m^{\prime}\right)$-block if and only if $l \geq l^{\prime}$ and $m \geq m^{\prime}$.

Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and each block b_{i} is associated with two parameters $\left(l_{i}, m_{i}\right)$. The objective of the problem is to decide the number of tallest tiling blocks made from B.

Input

Several sets of tiling blocks. The inputs are just a list of integers. For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, l_{i} and m_{i}. In other words, a game box is just a collection of n blocks $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and each block b_{i} is associated with two parameters $\left(l_{i}, m_{i}\right)$.

Note that n can be as large as 10000 and l_{i} and m_{i} are in the range from 1 to 100 . An integer $n=0$ (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star ' $*$ ' to signify the end of outputs.

Sample Input

3
32
11
23
5
42
24
33
11
55
0

Sample Output

