Consider the following recurrence relation defined on nonnegative integral values of n:

$$F(n) = \begin{cases} f_0, & \text{if} \quad n = 0\\ f_1, & \text{if} \quad n = 1\\ a \times F(n-1) + b \times F(n-2), & \text{otherwise} \end{cases}$$

Here a and b are constants such that the following two conditions are satisfied:

(1)
$$a^2 + 4b > 0$$

(2) $|a - \sqrt{a^2 + 4b}| \le 2$

Given the values of f_0 , f_1 , a, b and n, your job is to write a program that calculates the value of F(n). You may safely assume that F(n) will be an integer with absolute value not exceeding 10^9 .

Input

The first line of the input file contains an integer N ($1 \le N \le 10,000$) denoting the number of test cases to follow.

Each of the following N lines contains five (5) values in the following order: f_0 , f_1 , a, b and n. Here, f_0 and f_1 are integers with absolute values not exceeding 10^9 , and n is a nonnegative integer not greater than. On the other hand, a and b are floating-point numbers satisfying the two conditions stated in the problem description. Be assured that $|a|, |b| \le 10^6$.

Output

For each test case in the input file print a separate line containing the value of F(n).

Sample Input

3 0 1 1 1 20 0 1 -1 0 1000000000 -1 1 4 -3 18

Sample Output

6765 -1 387420487