Consider the following recurrence relation defined on nonnegative integral values of n :

$$
F(n)= \begin{cases}f_{0}, & \text { if } n=0 \\ f_{1}, & \text { if } n=1 \\ a \times F(n-1)+b \times F(n-2), & \text { otherwise }\end{cases}
$$

Here a and b are constants such that the following two conditions are satisfied:

$$
\begin{gather*}
a^{2}+4 b>0 \tag{1}\\
\left|a-\sqrt{a^{2}+4 b}\right| \leq 2
\end{gather*}
$$

Given the values of f_{0}, f_{1}, a, b and n, your job is to write a program that calculates the value of $F(n)$. You may safely assume that $F(n)$ will be an integer with absolute value not exceeding 10^{9}.

Input

The first line of the input file contains an integer $N(1 \leq N \leq 10,000)$ denoting the number of test cases to follow.

Each of the following N lines contains five (5) values in the following order: f_{0}, f_{1}, a, b and n. Here, f_{0} and f_{1} are integers with absolute values not exceeding 10^{9}, and n is a nonnegative integer not greater than. On the other hand, a and b are floating-point numbers satisfying the two conditions stated in the problem description. Be assured that $|a|,|b| \leq 10^{6}$.

Output

For each test case in the input file print a separate line containing the value of $F(n)$.

Sample Input

3

011120
01 -1 01000000000
-114418

Sample Output

6765
-1
387420487

