
A software house has decided to create a computer game, where the hero must find its way from a start
position to the end position, through a labyrinth. In the labyrinth, some cells contain magic fountains
that can be used to get super-powers an infinite number of times. Whenever the hero enters a cell with
a magic fountain, he gets super-powers.

Usually, our hero moves in the labyrinth one cell left/right/up/down at a time (to an empty cell).
With super-powers, the hero jumps to an empty cell N positions to the left/right/up/down. The super-
power lasts for M jumps, and the hero can change its jumping direction after each jump. A jump is
allowed if the end cell of the jump is within the map and it is not a wall — thus, the hero can jump
over walls. If the hero jumps to a cell with a new magic fountain, the hero gets the super-powers of the
new magic fountain, and the remaining effect of the previous magic fountain is cancelled. If the hero
jumps to the cell where he obtained its current super-powers, no effect occurs (i.e., the hero gets no
additional super-powers). When the current super-power ends, the hero proceeds its normal one-cell
movement. If, after getting super-powers in some fountain, the hero cannot move to any cell, he looses
his super-powers and returns to his previous cell. To reach the end position, the hero must move to
the end cell or finish one jump in the end cell.

Given the labyrinth map compute the minimum number of moves/jumps from the start position to
the end position.

Input

Input consists of multiple test cases. The first line of the input contains the number of test cases.
There is a blank line before each dataset.
The first line of each dataset contains two positive integers, L and C, separated by a empty space,

with L the number of lines and C the number of columns in the map. L and C are both lesser than 300.
The following L lines of the input contain C integers each that define the cells of the map (separated by
a empty space). Each integer, i, must be interpreted as follows: i = 0 represents a wall; i = 1 represents
an empty cell (where the hero can move into); i = M ∗ 10 +N represents an empty cell with a magic
fountain that makes the hero jump M times to the cell that is N positions to the left/right/up/down
of the current cell. M ranges from 1 to 5 and N ranges from 2 to 6. The maximum number of magic
fountains in a map is 5,000. The two last lines of the input define the coordinates of the start position
and end position (coordinates consist of two integers, denoting the line and column respectively, starting
from 0).

Output

For each test case, the output consists of one single line that contains an integer with the minimum
number of moves/jumps, from the start position to the end position. If it is impossible to reach the
end position, the output should be a single line containing ‘IMPOSSIBLE’.

Print a blank line between datasets.

Sample Input

1

8 8

0 1 1 1 1 1 1 1

0 1 0 0 1 13 1 1

0 1 32 1 1 1 0 0

0 1 1 0 1 1 1 0

0 1 1 0 0 0 0 0

0 1 1 1 1 1 1 0

0 1 0 0 1 1 1 0

0 1 1 1 1 1 1 0

1 7

5 4

Sample Output

14


