
00000000000000000011

11111111000000000000

00000000000000001111

00000000000011000000

00000000000000111100

00000000000001110000

00111000000000000000

00000000000111000000

00000000111100000000

00000000000000000001

11000000000000000000

00001111111000000000

00000111111111111111

00000000011111100000

00000000001111111110

00000000000000011110

00000001111100000000

00000011111111110000

00011110000000000000

01111111111100000000

00000000000000000111

A time schedule is represented by a 0-1 matrix with n lines and m columns. Each line represents
a person and each column an event. All the persons participating to an event have a one in the
corresponding entry of their line. Persons not attending the event have a zero entry in that column.
Events occur consecutively.

Write a program that finds a smart permutation of the events where each person attends all its
events in a row. In other words, permute the columns of the matrix so that all ones are consecutive in
each line.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases
following, each of them as described below. This line is followed by a blank line, and there is also a
blank line between two consecutive inputs.

The first line of the input consists in the number n ≤ 400 of lines. The second line contains m ≤ 400,
the number of columns. Then comes the n lines of the matrix. Each line consists in m characters ‘0’
or ‘1’.

The input matrix is chosen so that there exists only one smart permutation which preserves column
0 in position 0. To make things easier, any two columns share few common one entries.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases
will be separated by a blank line.

The output consists of m numbers indicating the smart permutation of the columns. The first
number must be 0 as column 0 does not move. The second number indicate the index (in the input
matrix) of the second column, and so on.

Sample Input

3

3

4

0110

0001

1101

6

5

01010

01000

10101

10100

00011

00101

21

20

00101000000000000000

10010010010110010100

00101101000000000000

01000000000000001000

00000101100000100000

01000000100000100000

00000010000110000000

01000000000001001000

00000000001001000011

00001000000000000000

10000000000000000100

00010010011000010011

01111101111001111011

01000000000001101011

01100101100001101001

00100101100000000000

00010000001001000011

01010000101001111011

00000010010010010000

00010010011111010111

00101001000000000000

Sample Output

0

3

1

2

0

2

4

3

1

0

17

11

12

6

9

15

3

10

18

19

13

16

1

14

8

5

7

2

4


