Shuffling the pixels in a bitmap image sometimes yields random looking images. However, by repeating the shuffling enough times, one finally recovers the original images. This should be no surprise, since "shuffling" means applying a one-to-one mapping (or permutation) over the cells of the image, which come in finite number.

Your program should read a number n, and a series of elementary transformations that define a "shuffling" ϕ of $n \times n$ images. Then, your program should compute the minimal number $m(m>0)$, such that m applications of ϕ always yield the original $n \times n$ image.

For instance if ϕ is counter-clockwise 90° rotation then $m=4$.

$$
\mathrm{A}<\mathrm{V} D \mathrm{~A}
$$

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

Input is made of two lines, the first line is number $n\left(2 \leq n \leq 2^{10}, n\right.$ even $)$. The number n is the size of images, one image is represented internally by a $n \times n$ pixel matrix $\left(a_{i}^{j}\right)$, where i is the row number and j is the column number. The pixel at the upper left corner is at row 0 and column 0 .

The second line is a non-empty list of at most 32 words, separated by spaces. Valid words are the keywords id, rot, sym, bhsym, bvsym, div and mix, or a keyword followed by "-". Each keyword key designates an elementary transform (as defined by Figure 1), and key- designates the inverse of transform key. For instance, rot- is the inverse of counter-clockwise 90° rotation, that is clockwise 90° rotation. Finally, the list $k_{1}, k_{2}, \ldots, k_{p}$ designates the compound transform $\phi=k_{1} \circ k_{2} \circ \cdots \circ k_{p}$. For instance, "bvsym rot-" is the transform that first performs clockwise 90° rotation and then vertical symmetry on the lower half of the image.

id , identity. Nothing changes : $b_{i}^{j}=a_{i}^{j}$.
rot, counter-clockwise 90° rotation
sym , horizontal symmetry : $b_{i}^{j}=a_{i}^{n-1-j}$
bhsym , horizontal symmetry applied to the lower half of image : when $i \geq n / 2$, then $b_{i}^{j}=a_{i}^{n-1-j}$. Otherwise $b_{i}^{j}=a_{i}^{j}$.
bvsym , vertical symmetry applied to the lower half of image ($i \geq n / 2$)
div , division. Rows $0,2, \ldots, n-2$ become rows $0,1, \ldots n / 2-1$, while rows $1,3, \ldots n-1$ become rows $n / 2, n / 2+1, \ldots n-1$.
mix , row mix. Rows $2 k$ and $2 k+1$ are interleaved. The pixels of row $2 k$ in the new image are $a_{2 k}^{0}, a_{2 k+1}^{0}, a_{2 k}^{1}, a_{2 k+1}^{1}, \cdots a_{2 k}^{n / 2-1}, a_{2 k+1}^{n / 2-1}$, while the pixels of row $2 k+1$ in the new image are $a_{2 k}^{n / 2}, a_{2 k+1}^{n / 2}, a_{2 k}^{n / 2+1}, a_{2 k+1}^{n / 2+1}, \cdots, a_{2 k}^{n-1}, a_{2 k+1}^{n-1}$.

Figure 1: Transformations of image $\left(a_{i}^{j}\right)$ into image $\left(b_{i}^{j}\right)$

Output

For each test case, your program should output a single line whose contents is the minimal number m $(m>0)$ such that ϕ^{m} is the identity. You may assume that, for all test input, you have $m<2^{31}$

The outputs of two consecutive cases will be separated by a blank line.

Sample Input

256
rot- div rot div
256
bvsym div mix

Sample Output

