In the laundry next to my flat, clothes are stored on coat hangers that are put on hooks fixed on a
circular rail moved electricill by co computer. Hooks are numbered so that finding a cloth is easy. The
rail moves in front of a mark. rail mover
Details We model the rail as an array of dimension N, referenced in a circular way, that is indices are to
be considered modulo N. When a batch of n clothes must be stored, the launderer types the number
 sdone, the rail moves so that hook numbered $k+n+1$ arrives on the mark, and the launderer puts
he n clothes on the hooks $k+1 . k+n$. Hooks k and $k+n+1$ are not used to store clothes, but are
 the actual cleaning of the batch of clothes.
When the custore comes back with the ticet number k, the launderer types k on the keyboard
the d the computer makes the rail moves so that the separating hook k of the corresponding batch is in
ont of the mark. The launderer takes the batch back (during this operation the rail does not move) did gives it back to the customer. When a cloth is handed back to a customer, the corresponding hook

Input
The input begins with a single positive integer on a line by itself indicating the number of the cases
following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs. An input file has the following format. The first line contains the number N of hooks, $(1 \leq N \leq 300)$.
We then have the number l of lines in the file after the current one. Follow l lines with two different possible formats. The first one is: D n
to deposit n clothes. The second one
${ }^{*} k$
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases
will be separated by a blank line. When the customer makes a deposit of clothes, the p
batch. If this camnot be found, the program's output is
No space left, please come back later

$$
\text { If ticket } k \text { can be issued, the program's output is }
$$

$$
\text { The launderer gives ticket } k \text {. }
$$

$$
\begin{aligned}
& \text { When ticket } k \text { is given back, the prid } \\
& \text { The launderer gives back batcch } k \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and all hooks sused to hang the lolthes of the corresponding customer are made free. Moreover, a } \\
& \text { separating hook of a batch that has been removed is also made free if both its right and let neighbors }
\end{aligned}
$$

$$
\begin{aligned}
& \text { separating hook of a batch that has been removed is also made fiee if both } \\
& \text { are free } \\
& \text { Whenever hooks } h, \ldots, h+q \text { become free, the program should output }
\end{aligned}
$$

is freed.

$$
\begin{aligned}
& \text { or all } i \text { betwen } h \text { and } h+q, ~ \\
& \text { We assume that at the beg }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for alli } i \text { between } h \text { and } h+q \text {. } \\
& \text { mark assume that at the begining of the reading, the rail is empty and that hook } 0 \text { is in front of the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mark. Only clothes that have been deposited can be withdrawn. } \\
& \text { Sample } 1 \text { explanation: In that case, } N=22 \text {. The starting position looks iliee }
\end{aligned}
$$

A ticket is given and we write 'The launderer gives ticket 0 .' 'in the output file. Next we read
D ${ }^{3}$ 'and we look for an empty zone with 5 hooks, this corresponds to a zone starting at hook 2 (used

and we write '0 is freed.' and ' 1 is freed.' 'in the output file. When we get 'D 3 ' clothes are
stored on hooks $7,8,9$ (6 and 10 are separators)

and we write 'The launderer gives ticket 6.' in the output file. The last deposit is 'D 11 ' which
yields to

and we write 'The _aunderer gives ticket 10.' in the output file

