Charles Frédéric Gros (CFG) has decided to disprove the Riemann hypothesis numerically. For a given integer $D>0$ of the form $4 k+3$ and free of square prime factors, this amounts to computing the cardinality $h(D)$ of the set

$$
C(D) \stackrel{\text { def }}{=}\left\{(a , b , c) \left|b^{2}-4 a c=-D,|b| \leq a \leq c, \text { where } b \geq 0 \text { if } a=c \text { or } a=|b| .\right.\right.
$$

(Where a, b, c are integers.)
For instance, $C(3)=\{(1,1,1)\}, C(15)=\{(1,1,4),(2,1,2)\}$. Note that $D=75$ is not eligible, since $75=3 \cdot 5^{2}$. Non-eligible numbers in the interval $[3,103]$ are $\{27,63,75,99\}$.

CFG is interested in values of D for which $h(D) / \sqrt{D}$ is large. Your role is to write a program to help CFG finding these record numbers.

Input

You are given an input file consisting of several test cases, each of them consists of three integers on a single line:

Dmin Dmax K
where $3 \leq \operatorname{Dmin} \leq \operatorname{Dax}<2^{31}$ and are of the form $4 k+3$. Moreover, $\operatorname{Dmax}-\operatorname{Dmin} \leq 10^{6}$ and $K<10^{4}$. For such values, one has $h(D)<2^{31}$.

Output

For each test case, your program must determine the eligible values of D in the interval [Dmin, Dmax] for which

$$
f(D)=\lfloor(1000 h(D)) /\lfloor\sqrt{D}\rfloor\rfloor \geq K
$$

The output will consist of lines:
Dhf
where D is a record number, $h=h(D)$ and $f=f(D)$.
If no answer is found, then output a line containing the word 'empty'.
Write a blank line to separate the output of two consecutive cases.

Sample Input

31030
272710

Sample Output

311000
71500
111333
152666
191250
233750
313600
352400
394666
431166
475833
512285
554571
593428
$\begin{array}{lll}67 & 125\end{array}$
717875
795625
833333
876666
912222
958888
1035500
empty

