In Episode III of Star Wars (whose alleged title is How I became Vader), R2-D2 (Artoo-Detoo) is again confronted to a tedious work. He is responsible for the loading of the republic transport starships in the fastest way. Imagine a huge space area where n starships are parked. Each starship has a capacity of K cubic femtoparsec. Containers C_{i} arrive one at a time with some volume v_{i} (expressed in cubic femtoparsec). R2-D2 wants to minimize the number of starships used for a given sequence of containers.

Smart as he is, R2-D2 knows for sure that the problem is a hard one, even with the force being around. Here is the heuristics he selected to solve his problem. Start with all starships ready to load, and numbered S_{0}, S_{1}, etc.. When container C_{j} arrives, select the starship of minimal index i that can contain C_{j} and put it in S_{i}. In some sense, this heuristics minimizes the move of the container arriving before its loading.

At the end of the n arrivals, R2-D2 counts the number s of starships used and he measures the total waste w of the sequence. For $i=0 . . s-1$, the waste in starship i is given by the unused volume.

Your task is to simulate the algorithm of R2-D2.

Input

Input consists of several test cases, each of them following the description below. A blank line separates two consecutive cases.

Each test case begins with capacity K on a line ($K \leq 1000$), followed by the number of containers in the sequence, n on the second line $\left(1 \leq n \leq 10^{6}\right)$. There are two possible formats for the remaining lines. If it contains one integer, then this is the next v_{i}. If it begins with the character ' b ' (for block), it is followed by 2 integers r and v. This means that the r next containers arriving have volume v.

Output

For each test case, your program must output the number s of starships used, followed by a blank, followed by the total waste w.

The outputs of two consecutive cases will be separated by a blank line.

Note:

In the first sample input below, you load starship S_{0} with 50 and 25 and starship S_{1} with 70 , so that the waste is $(100-75)+(100-70)=55$. The answer must be ' 255 '

The second case which corresponds to the sequence $50,40,40,20 . S_{0}$ will contain $90, S_{1}$ will contain 60 , so that the waste is $10+40=50$ and the answer will be: ' 250 '.

Sample Input

Sample Output

255
250

