Every computer science student knows binary trees. Here is one of many possible definitions of binary trees. Binary trees are defined inductively. A binary tree $t$ is either an external node (leaf) ' $\bullet$ ' or a single ordered pair ( $t_{1}, t_{2}$ ) of two binary trees, left subtree $t_{1}$ and right subtree $t_{2}$ respectively, called an internal node ' $\circ$ '. Given an integer $n, B(n)$ is the set of trees with $n$ leaves. For instance, the picture below shows the two trees of $B(3)=\{(\bullet,(\bullet, \bullet)),((\bullet ; \bullet), \bullet)\}$.


Observe that those trees both have two internal nodes and a total of five nodes.
Given a tree $t$ we define its unique integer identifier $N(t)$ :

1. $N(\bullet)=0$
2. $N\left(t_{1}, t_{2}\right)=2^{n_{1}+n_{2}}+2^{n_{2}} N\left(t_{1}\right)+N\left(t_{2}\right)$, where $n_{1}$ and $n_{2}$ are the number of nodes in $t_{1}$ and $t_{2}$ respectively.

For instance, we have $N(\bullet, \bullet)=2^{2}+2^{1} \times 0+0=4, N(\bullet,(\bullet, \bullet))=2^{4}+2^{3} \times 0+4=20$ and $N((\bullet, \bullet), \bullet)=2^{4}+2^{1} \times 4+0=24$.

The ordering $\succeq$ is defined on binary trees as follows:

- $\succeq t$

$$
\left(t_{1}, t_{2}\right) \succeq\left(u_{1}, u_{2}\right), \text { when } t_{1} \succeq u_{1} \text { and } t_{1} \neq u_{1}, \text { or } t_{1}=u_{1} \text { and } t_{2} \succeq u_{2}
$$

Hence for instance, $(\bullet,(\bullet, \bullet)) \succeq((\bullet, \bullet), \bullet)$ holds, since we have $\bullet \succeq(\bullet, \bullet)$.
Using the ordering $\succeq, B(n)$ can be sorted. Then, given a tree $t$ in $B(n)$, we define $S(t)$ as the tree that immediately follows $t$ in the sorted presentation of $B(n)$, or as the smallest tree in $B(n)$, if $t$ is maximal in $B(n)$. For instance, we have $S(\bullet, \bullet)=(\bullet \bullet)$ and $S(\bullet,(\bullet, \bullet))=((\bullet, \bullet), \bullet)$. By composing the inverse of $N, S$ and $N$ we finally define a partial map on integers.

$$
s(k)=N\left(S\left(N^{-1}(k)\right)\right)
$$

Write a program that computes $s(k)$.

## Input

The first input line contains an integer $K$, with $K>0$. It is followed by $K$ lines, each specifying an integer $k_{i}$ with $1 \leq i \leq K$ and $0 \leq k_{i}<2^{31}$.

## Output

The output should consist of $K$ lines, the $i$-th output line being $s\left(k_{i}\right)$, or ' NO ' if $s\left(k_{i}\right)$ does not exist.

## Sample Input

5
4
0
20
5
432

## Sample Output

