When representing a number in decimal format, we need the ten digits ' 0 ' to ' 9 '. If we are only allowed to use a subset of the ten decimal digits, there is only a limited number of numbers we can represent. If, for example, we only can use the digits ' 1 ' and ' 2 ', the numbers 11 and 12 can be represented, but the number 13 can not. If we scan the multiples of $13: 13,26,39,52,65,78,91,104,117,130,143$, $156,169,182,195,208,221$, etc., we see that 221 is the smallest multiple of 13 that can be represented using only the digits ' 1 ' and ' 2 '.

In this problem you are asked to give the smallest multiple of a certain number that can be represented using a given subset of the decimal digits. This multiple can be the number itself, but it has to be greater than zero.

Input

The input consists of several cases, each on a line by itself. Each line has two numbers F and N. F is a number composed of the digits you are allowed to use in the representation. It has a minimum of 1 and a maximum of 10 unique digits in descending order. N is the number for which you are to find the multiple. It is greater than zero, but smaller than 100000 .

A line with two zeros ends the input and should not be processed.

Output

For every case in the input, one line containing the smallest multiple of N that can be represented using the digits in F. If such a multiple of N doesn't exist, print the word 'impossible' (without the quotes). Never print leading zeros.

Sample Input

111
2112
2113
987654321012345
4321056789
975312
00

Sample Output

11
12
221
12345
1022202
impossible

