The depth of phi value of a number is denoted by the number of steps required before it reaches 1 . An example will make it very clear.

$$
\begin{aligned}
& \phi(13)=12 \ldots \text { step } 1 \\
& \phi(12)=4 \ldots \text { step } 2 \\
& \phi(4)=2 \ldots \text { step } 3 \\
& \phi(2)=1 \ldots \text { step } 1
\end{aligned}
$$

So the depth of $p h i(13)$ is 4 . We name this function as depthphi. So we can write depthphi $(13)=4$. The sum of depthphi function (SODF) takes two integers as parameter and its definition is given below:

$$
\operatorname{SODF}(m, n)=\sum_{i=m}^{n} \operatorname{depthphi}(i), \quad m \leq n
$$

Given the value of m and n your job is to find the value of $\operatorname{SODF}(m, n)$.
The following paragraph is extracted from Mathworld to inform you about phi function.
The totient function $\phi(n)$ or $p h i(n)$, also called Euler's totient function, is defined as the number of positive integers $\leq n$ that are relatively prime to (i.e., do not contain any factor in common with) n, where 1 is counted as being relatively prime to all numbers. Since a number less than or equal to and relatively prime to a given number is called a totative the totient function $\phi(n)$ can be simply defined as the number of totatives of n. For example, there are eight totatives of $24(1,5,7,11,13,17,19$, and $23)$, so $\phi(24)=8$. The totient function is implemented in Mathematica as EulerPhi [n].

Input

The first line of the input file contains an integer $N(0<N<2001)$ which indicates how many sets of inputs are there. Each of the next N lines contains two integers m and $n(2 \leq m \leq n \leq 2000000)$.

Output

For each line of input produce one line of output. This line contains an integer S, which actually denotes the value of $\operatorname{SODF}(m, n)$.

Sample Input

2
210
100000200000

Sample Output

22
1495105

