How many triangles are there in the following figure?

... ding! Time's up. The answer is 29.
Given at most 10 line segments, you are to write a program that counts the number of triangles bounded by them. Note that three colinear points do not make a triangle.

Input

Input consists of several test cases. Each case begins with a line containing an integer $N(3 \leq N \leq 10)$. The following N lines each gives four integers, x_{1}, y_{1}, x_{2} and y_{2}, meaning that you draw a straight line segment from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$. All the coordinates given have their absolute values no greater than 100.

Input is terminated by EOF.

Output

For each case, output the number of triangles bounded by the N lines.

Sample Input

10
$-545-4$
$-54-6-1$
-5 -3 -1 4
$-5-353$
-5 -3 70
-1 46 -2
$006-2$
$6-253$
705 -4
$-6-13-1$

Sample Output

