Let's define the function $\operatorname{Suspect}(b, n)$, where b is an integer that is called the base, and n is an odd integer. It returns one of the boolean values TRUE or FALSE.

- Let t be the highest power of 2 so that 2^{t} devides $n-1$ and u be the biggest odd integer that devides $n-1$. This means we can write $n-1=2^{t} u$.
- Let x_{0} be $b^{u} \bmod n$.
- For all i from 1 to t, let x_{i} be $\left(x_{i-1}\right)^{2} \bmod n$.
- If, for any i from 1 to $t, x_{i}=1$ and $x_{i-1}<>1$ and $x_{i-1}<>n-1$, then return FALSE.
- else, if $x_{t}<>1$, then return FALSE.
- else return TRUE.

The connaisseur will recognize this function as the essential part of the Miller-Rabin primality test, although it can appear in different forms throughout the literature. In Cormen et. al. Ch. 31 this function is called Witness and returns the opposite boolean value.

We will call the odd number n suspect in base b if the above function returns TRUE. At the end of this description three examples are given.

It can be proved that whenever the function $\operatorname{Suspect}(b, n)$ returns FALSE for some base b and an odd number n it is sure that n is not a prime number. The reverse, however, is not the case: whenever Suspect (b, n) returns TRUE, there is a high probability that n is a prime number, but we can't be sure. We say that $\operatorname{Suspect}(b, n)$ fails if it returns TRUE for an n that is not a prime number

Upto 1000000 there are only 46 failures in base 2, the first three being 2047, 3277 and 4033 . In base 3 there are 73 falures, but all of them are different from the base 2 failures, so for every odd number $n<1000000$ we have that if $\operatorname{Suspect}(2, n)$ and $\operatorname{Suspect}(3, n)$ we can be sure that n is a prime number.

Upto 2^{32} we only need to calulate three bases: $\operatorname{Suspect}(2, n), \operatorname{Suspect}(7, n)$ and $\operatorname{Suspect}(61, n)$. If all three function calls return TRUE, it's sure that n is a prime number. This gives us a very quick primality test for all numbers within the range of current day integers.

In this problem we want you to calculate the failures of the function $\operatorname{Suspect}(b, n)$ in a certain base and for a certain range of numbers n.

Input

The input consists of several lines, each containing three integers: Base, Min and Max. Base is an integer between 2 and 1024 (inclusive), Min and Max will be between 3 and 4294967295 (inclusive). Max will not be smaller than Min. Max will be at most 100000 bigger than Min.

A line with three zeroes marks the end of the input; this line should not be processed.

Output

For each line of input, one line of output: "There are $N U M B E R 1$ odd non-prime numbers between NUMBER2 and NUMBER3."

If there are odd numbers within this range that fail as suspects in the given base, output an other line: "NUMBER4 suspects fail in base $N U M B E R 5$:", followed by all failures, in ascending order, each on a line by itself. Use the plural form, even if there is only one failure.

If there are no failures in this range, output the line: "There are no failures in base $N U M B E R 5$ $N U M B E R 1 . . N U M B E R 5$ are to be replaced by the appropriate values.
Separate the cases by a blank line.

Notes:

Suspect (2, 121):

$$
\begin{aligned}
& n-1=120=8 * 15=2^{3} * 15, \text { therefore } t=3, u=15 \\
& x_{0}=2^{15} \bmod 121=32768 \bmod 121=98 \\
& x_{1}=98^{2} \bmod 121=9604 \bmod 121=45 \\
& x_{2}=45^{2} \bmod 121=2025 \bmod 121=89 \\
& x_{3}=89^{2} \bmod 121=7921 \bmod 121=56
\end{aligned}
$$

None of the x_{i} is 1 , so the loop test continues until the end. Since x_{t} is not 1 , the function will return FALSE. This is a correct result, since $121=11 * 11$ is composite

Suspect $(3,121)$:
$n-1=120=8 * 15=2^{3} * 15$, therefore $t=3, u=15$
$x_{0}=3^{15} \bmod 121=14348907 \bmod 121=1$
$x_{1}=1^{2} \bmod 121=1 \bmod 121=1$
$x_{2}=1^{2} \bmod 121=1 \bmod 121=1$
$x_{3}=1^{2} \bmod 121=1 \bmod 121=1$
All of the x_{i} are 1, so the loop test continues until the end. Since x_{t} is 1 , the function will return TRUE. This is a failure!.
Suspect $(3,89)$:

$$
\begin{aligned}
& n-1=88=8 * 11=2^{3} * 11, \text { therefore } t=3, u=11 \\
& x_{0}=3^{11} \bmod 89=177147 \bmod 89=37 \\
& x_{1}=37^{2} \bmod 89=1369 \bmod 89=34 \\
& x_{2}=34^{2} \bmod 89=1156 \bmod 89=88 \\
& x_{3}=88^{2} \bmod 89=1 \bmod 89=1
\end{aligned}
$$

Here we see the loop test again continue to the end. Since x_{t} is 1 , the function will return TRUE. This is correct, because 89 is a prime number.

Sample Input

186800000900000
240000000004000001000
3121121
000

Sample Output

There are 42677 odd non-prime numbers between 800000 and 900000.
4 suspects fail in base 186:
821059
840781
873181
876961

There are 457 odd non-prime numbers between 4000000000 and 4000001000 .
There are no failures in base 2 .
There are 1 odd non-prime numbers between 121 and 121.
1 suspects fail in base 3 :
121

