Consider the two patterns of ' 0 ' and ' X ' below ('.' represent an empty square). We want the first pattern to be transformed into the second pattern in one time unit. During this time unit, each symbol ('0' and ' X ') can move one step in any of the four directions (or remain at its current square). All movements happen simultaneously, so a symbol can move to an occupied square, if that symbol is moved to some other square. If a symbol moves from square A to B, and the symbol at B moves to A, we have a swap. Write a program which calculates the least number of swaps needed to transform a given pattern into another given pattern.
. XO. . . XO.
. $O X$. . XX..
.XX. . . OX.
To transform the first pattern above into the second one requires one swap: The two symbols in the first line are moved to the right, the ' 0 ' in the second line must be swapped with the ' X ' below. The other two ' X ' are moved up and down, respectively.

Input

The first line in the input contains the number of test cases to follow (at most 20). Each test case starts with a line containing two integers, w and $h(1 \leq w, h \leq 8)$, the width and height of the two patterns. Then follow h lines describing each row of the two patterns (the two patterns will be separated with a single space, see the sample input). The only allowed characters in the patterns will be the symbols ' O ', ' X ' and '.'.

Output

For each input you should output a line containing a single integer: the least number of swaps required to transform the first pattern into the second. If the transformation is not possible, output a ' -1 '.

Sample Input

3

53
. $\mathrm{XO} . . \mathrm{XO}$.
. $O X$. . XX.
. XX. . . OX .
44
OXOX XOXO
XX.O OX.X
0..X X. 0

XOXO OXOX
34
.X. .X.
.OX XO.
. 0 . 0.

Sample Output

1
0

