Given two polynomials f(x) and g(x) in Z_n , you have to find their *GCD* polynomial, i.e., a polynomial r(x) (also in Z_n) which has the greatest degree of all the polynomials in Z_n that divide both f(x) and g(x). There can be more than one such polynomial, of which you are to find the one with a leading coefficient of 1 (1 is the unity in Z_n . Such polynomial is also called a *monic polynomial*).

Note: A function f(x) is in Z_n means all the coefficients in f(x) is modulo n.

Input

There will be no more than 101 test cases. Each test case consists of three lines: the first line has n, which will be a prime number not more than 1500. The second and third lines give the two polynomials f(x) and g(x). The polynomials are represented by first an integer D which represents the degree of the polynomial, followed by (D + 1) positive integers representing the coefficients of the polynomial. the coefficients are in decreasing order of Exponent. Input ends with n = 0. The value of D won't be more than 100.

Output

For each test case, print the test case number and r(x), in the same format as the input

Note: The first sample input has $2x^3 + 2x^2 + x + 1$ and $x^4 + 2x^2 + 2x + 2$ as the functions.

Sample Input

3 3 2 2 1 1 4 1 0 2 2 2 0

Sample Output

Case 1: 2 1 2 1