Given two polynomials $f(x)$ and $g(x)$ in Z_{n}, you have to find their $G C D$ polynomial, ie, a polynomial $r(x)$ (also in Z_{n}) which has the greatest degree of all the polynomials in Z_{n} that divide both $f(x)$ and $g(x)$. There can be more than one such polynomial, of which you are to find the one with a leading coefficient of 1 (1 is the unity in Z_{n}. Such polynomial is also called a monic polynomial).

Note: A function $f(x)$ is in Z_{n} means all the coefficients in $f(x)$ is modulo n.

Input

There will be no more than 101 test cases. Each test case consists of three lines: the first line has n, which will be a prime number not more than 1500 . The second and third lines give the two polynomials $f(x)$ and $g(x)$. The polynomials are represented by first an integer D which represents the degree of the polynomial, followed by $(D+1)$ positive integers representing the coefficients of the polynomial. the coefficients are in decreasing order of Exponent. Input ends with $n=0$. The value of D won't be more than 100 .

Output

For each test case, print the test case number and $r(x)$, in the same format as the input
Note: The first sample input has $2 x^{3}+2 x^{2}+x+1$ and $x^{4}+2 x^{2}+2 x+2$ as the functions.

Sample Input

$$
3
$$

32211
410222
0

Sample Output

Case 1: 2121

