Two kids are walking in a $H \times W$ grid. Each square in the grid contains a character (whose ASCII code lies between 33 and 127). Both kids can move north, east, west and south each step. The first kid walked N steps, the second kid walked M steps. ($0 \le N \le M \le 20000$).

If we write down all the characters each kid walks on, we get two strings S_A and S_B . your task is to delete as few characters as possible, so that the two new strings are the same.

Input

the first line contains a single integer t $(1 \le t \le 15)$, the number of test cases. Each test case contains several lines. The first line contains two integers H and W $(1 \le H, W \le 20)$, the next H lines contains the grid. Next line contains three integers N, X_0 and Y_0 $(1 \le X_0 \le H, 1 \le Y_0 \le W, X)$ increases from North to South, while Y increases from West to East), indicating the first kinds walks from (X_0, Y_0) , for N steps. The next line contains a string of N characters, N, E, W, S stands for North, West, South and East, respectively. The second kid's information follows, which is the same format.

You may assume the walk sequence is correct: they will never go outside the grid.

Output

For each case, print the case number and two integers X_A and X_B , indicating the number of characters deleted from S_A and S_B , respectively.

Note: In the first sample, $S_A = ABCDG$, $S_B = ADEB$, we must delete 3 characters from S_A and 2 from S_B , so that they are the same (both A_B or A_D)

Sample Input

2 34 ABCD DEFG ABCD 4 1 1 EEES 3 3 1 NES 34 ABCD DEFG ABCD 4 1 1 EEES 3 3 1 NES

Sample Output

Case 1: 3 2 Case 2: 3 2