Two kids are walking in a $H \times W$ grid. Each square in the grid contains a character (whose ASCII code lies between 33 and 127). Both kids can move north, east, west and south each step. The first kid walked N steps, the second kid walked M steps. ($0 \leq N \leq M \leq 20000$).

If we write down all the characters each kid walks on, we get two strings S_{A} and S_{B}. your task is to delete as few characters as possible, so that the two new strings are the same.

Input

the first line contains a single integer $t(1 \leq t \leq 15)$, the number of test cases. Each test case contains several lines. The first line contains two integers H and W ($1 \leq H, W \leq 20$), the next H lines contains the grid. Next line contains three integers N, X_{0} and $Y_{0}\left(1 \leq X_{0} \leq H, 1 \leq Y_{0} \leq W, X\right.$ increases from North to South, while Y increases from West to East), indicating the first kinds walks from (X_{0}, Y_{0}), for N steps. The next line contains a string of N characters, N, E, W, S stands for North, West, South and East, respectively. The second kid's information follows, which is the same format.

You may assume the walk sequence is correct: they will never go outside the grid.

Output

For each case, print the case number and two integers X_{A} and X_{B}, indicating the number of characters deleted from S_{A} and S_{B}, respectively.

Note: In the first sample, $S_{A}=A B C D G, S_{B}=A D E B$, we must delete 3 characters from S_{A} and 2 from S_{B}, so that they are the same (both A_{B} or A_{D})

Sample Input

2
34
ABCD
DEFG
ABCD
411
EEES
331
NES
34
ABCD
DEFG
ABCD
411
EEES
331
NES

Sample Output

Case 1: 32
Case 2: 32

