The famous contempory art designer Momo is preparing its new open-air exhibit. It will consist of randomly placed poles emitting lasers in horizontal direction. All the lasers shall reach the so-called laser totem T. However, as the poles are placed randomly at different heights, a laser light L might be hidden behind a taller pole P , if P, T and L are aligned and if the height of P is larger or equal to the pole where L is attached.

Your job is, given a configuration of poles, determine which are the visible poles.

Input

The input is a file containing several data sets. Each data set composed as follows. The first line contains an integer $0<N \leq 100000$, giving the number of poles. The following N lines contain three integers $-100000 \leq X \leq 100000,0 \leq Y \leq 10000$, and $0 \leq Z \leq 10000$ such that X and Y are the coordinates of the pole and Z is the height of the pole in the position (X, Y). You can assume that in a given data set, no two poles have the same X and Y coordinates and the position of the totem is $(0,0)$ and its height is infinite. The input ends with a line containing the number ' 0 '.

Output

The output of the program shall indicate if all lights are visible or not. If some lights are invisible from the laser totem, the program shall output their X and Y coordinates, in increasing order of X-coordinate and Y-coordinate. Put a semicolon between the coordinates of two points that are not visible and put a dot after the coordinates of the last point that is not visible. See the sample output for an example of the expected formatting of the output.

Sample Input

3

$\begin{array}{lll}-1 & 0 & 1\end{array}$
$\begin{array}{lll}0 & 1 & 1\end{array}$
101
5
$\begin{array}{lll}-1 & 0 & 1\end{array}$
-112
-222
$-3 \quad 3 \quad 3$
-442
0

Sample Output

Data set 1:
All the lights are visible.
Data set 2:
Some lights are not visible:
$\mathrm{x}=-4, \mathrm{y}=4$;
$x=-2, y=2$.

