Perfect numbers are the numbers whose sum of divisors are twice the number itself. For example 28 is a perfect number because the summation of the divisors of 28 is $(1+2+4+7+14+28)=56=2 * 28$. Like perfect persons perfect numbers are also rare. The first few even perfect numbers are $6,28,496$, $8128,33550336,8589869056,137438691328$ and 2305843008139952128 . The sign σ is used to denote the function, the sum of all divisors. So we can write $\sigma(28)=56$. If n is a perfect number then $\sigma(n)-2 n=0$. If an even number has only one odd divisor (other than one) then that number is called almost odd prime. For example 6, 24 are almost odd prime numbers. Let X denote the set of all almost odd prime numbers. Then the abundance function $\operatorname{abun}()$ is defined as

$$
\operatorname{abun}(n)=\sum_{a_{i} \in X, a_{i} \leq n} \sigma\left(a_{i}\right)-2 a_{i}
$$

for any positive number n. Given the value of n your job is to find the value of $\operatorname{abun}(n)$.

Input

The input file contains at most 1001 lines of inputs. Each line contains an integer $n(1 \leq n \leq 10000000)$, which denotes the value of n. Input is terminated by a line where the value of n is zero. This line should not be processed.

Output

For each line of input produce one line of output. This line contains two integers separated by a single space. The first integer is the input number n and the second integer is the value of $\operatorname{abun}(n)$.

Sample Input

10
20
1000000
0

Sample Output

$10-2$
200
$1000000-13478901222$

