Given a rectangular grid of characters you have to find out the length of a side of the largest square such that all the characters of the square are same and the center [intersecting point of the two diagonals] of the square is at location (r, c). The height and width of the grid is M and N respectively. Upper left corner and lower right corner of the grid will be denoted by $(0,0)$ and ($M-1, N-1$) respectively. Consider the grid of characters given below. Given the location $(1,2)$ the length of a side of the largest square is 3 .

```
abbbaaaaaa
abbbaaaaaa
abbbaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaccaaaaaa
aaccaaaaaa
```


Input

The input starts with a line containing a single integer $T(<21)$. This is followed by T test cases. The first line of each of them will contain three integers M, N and $Q(<21)$ separated by a space where M, N denotes the dimension of the grid. Next follows M lines each containing N characters. Finally, there will be Q lines each containing two integers r and c. The value of M and N will be at most 100 .

Output

For each test case in the input produce $Q+1$ lines of output. In the first line print the value of M, N and Q in that order separated by single space. In the next Q lines, output the length of a side of the largest square in the corresponding grid for each (r, c) pair in the input.

Sample Input

1

7104
abbbaaaaaa
abbbaaaaaa
abbbaaaaaa
aaaaaaaaa
ааааааааа
aaccaaaaaa
aaccaaaaaa
12
24
46
52

Sample Output

7104
3
1
5
1

