
In programming language design
circles, there has been much debate
about the merits of “structural
equivalence” vs. “name equiva-
lence” for type matching. Pas-
cal purports to have “name equiv-
alence”, but it doesn’t; C purports
to have structural equivalence, but
it doesn’t. Algol 68, the Latin of
programming languages, has pure
structural equivalence.

A simplified syntax for an Algol
68 type definition is as follows:

type def -> type T = type expr
type expr -> T | int | real

|

char | struct (field defs)

field defs -> T | field defs T

In this syntax, T is a programmer-defined type name (in this problem, for simplicity, a single upper
case letter). Plain text symbols appear literally in the input, and zero or more spaces may appear
where there are spaces in the syntax.

Algol 68 type equivalence say that two types are equivalent if they are the same primitive type or
they are both structures containing equivalent types in the same order.

Input

Input consists of several test cases. Each test case is a sequence of Algol 68 definitions, as described
above, one per line. A line containing ‘-’ separates test cases. A line containing ‘--’ follows the last
test case.

Output

The output for each case will consist of several lines; each line should contain a list of type names, all of
which represent equivalent types. Each type name should appear on exactly one line of output, and the
number of output lines should be minimized. The names in each list should be in alphabetical order;
the lines of output should also be in alphabetical order. Output an empty line between test cases.

Sample Input

type A = int

type B = A

type C = int

type X = struct(A B)

type Y = struct(B A)

type Z = struct(A Z)

type S = struct(A S)

type W = struct(B R)

type R = struct(C W)

--

Sample Output

A B C

R S W Z

X Y

