A fast food store offers a series of "combo meal deals" in addition to individually priced items. For example, the menu at the store may look like this:

Hamburger	$\$ 3.49$
Fries	$\$ 0.99$
Pop	$\$ 1.09$
Ice Cream	$\$ 2.19$
Value Meal (1 Hamburger, 1 Fries, 1 Pop)	$\$ 4.79$
Lovers-Only (2 Hamburgers, 2 Fries, 2 Pops, 1 Ice Cream)	$\$ 9.99$

Buying a combo is cheaper than buying its items individually.
A parent of many kids (or a coach of many students) face this recurring problem: I need to get, say, 9 hamburgers, 6 fries, and 8 pops. How do I fit this into the menu, using the combo deals optimally, so as to pay as little as possible? Note that I am a conservativist, so I don't buy more food than I need.

Input

The input contains several test cases, each of them with a menu and several orders.

1. Menu: Individual items, then combos.
(a) Individual items: number of items $I \leq 6$, then their prices (at most $\$ 10$ each).
(b) Combos: number of combos (at most 8), then for each combo, its composition as an I-tuple of quantities and its price.

Example: the sample input below encodes the menu above.
2. Orders: number of orders (at most 10), then for each order, an I-tuple of the wanted quantities. Each element in the tuples is at most 9 .

All prices are integers in cents.

Output

For each order of each case, output the minimum payment in cents on its own line.

Sample Input

434999109219
2
1110479
2221999
2
9680
9685

Sample Output

