A matrix is a rectangular array of elements, most commonly numbers. A matrix with m rows and n columns is said to be an m-by- n matrix. For example,

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
0 & 4 & -1 \\
0 & 0 & 0 \\
5 & -2 & 11
\end{array}\right)
$$

is a 4-by-3 matrix of integers.
The individual elements of a matrix are usually given lowercase symbols and are distinguished by subscripts. The i th row and j th column of matrix A is usually referred to as $a_{i j}$. For example, $a_{23}=-1$. Matrix subscripts are 1-based.

The transpose of a matrix M, denoted M^{T}, is formed by interchanging the rows and columns of M. That is, the $i j$-th element of M^{T} is the $j i$-th element of M. For example, the transpose of matrix A above is:

$$
A^{T}=\left(\begin{array}{cccc}
1 & 0 & 0 & 5 \\
3 & 4 & 0 & -2 \\
2 & -1 & 0 & 11
\end{array}\right)
$$

A matrix is said to be sparse if there are relatively few non-zero elements. As a m-by- n matrix has $m n$ number of elements, storing all elements of a large sparse matrix may be inefficient as there would be many zeroes. There are a number of ways to represent sparse matrices, but essentially they are all the same: store only the non-zero elements of the matrix along with their row and column.

You are to write a program to output the transpose of a sparse matrix of integers.

Input

You are given several sparse matrix in a row, each of them described as follows. The first line of the input corresponds to the dimension of the matrix, m and n (which are the number of rows and columns, respectively, of the matrix). You are then given m sets of numbers, which represent the rows of the matrix. Each set consists of two lines which represents a row of the matrix. The first line of a set starts with the number r, which is the number of non-zero elements in that row, followed by r numbers which correspond to the column indices of the non-zero elements in that row, in ascending order; the second line has r integers which are the matrix elements of that row. For example, matrix A above would have the following representation:

43
3123
132
223
4-1
0

3123
$5-211$
Note that for a row with all zero elements, the corresponding set would just be one number, ' 0 ', in the first line, followed by a blank line.

You may assume:

- the dimension of the sparse matrix would not exceed 10000-by-10000,
- the number of non-zero element would be no more than 1000 ,
- each element of the matrix would be in the range of -10000 to 10000 , and
- each line has no more than 79 characters.

Output

For each input case, the transpose of the given matrix in the same representation.

Sample Input

43
3123
132
223
4-1
0

3123
$5-211$

Sample Output

