In this problem you are given a square maze of dimension N with $N * N$ blocks. Each block is numbered as follows:

$N-1,0$	$N-1,1$	\ldots	\ldots	$N-1, N-1$
\ldots	\ldots	\ldots	\ldots	\ldots
2,0	2,1	2,2	\ldots	\ldots
1,0	1,1	1,2	\ldots	\ldots
0,0	0,1	0,2	\ldots	$0, N-1$

The maze has only one entry which is at $(0,0)$ and only one exit which is at ($N-1, N-1$). From each block you can move in four directions ($\mathrm{N}, \mathrm{E}, \mathrm{W}, \mathrm{S}$) and the cost is 1 for each movement among the maze but collecting treasure does not require any cost. Some blocks contain treasures that you will have to collect. Suppose there are T treasures in the maze and you have to collect at least $S(S \leq T)$ treasures from them. In this problem, you are requested to find an optimal way from starting location to ending location and take at least S treasures from the maze. Remember that, you can visit a block more than once if you want.

Input

The first line of the input contains three integers $N(N \leq 30), T(T \leq 30)$ and $S(S \leq 10$ and $S \leq T)$ describing the dimension of the maze, number of treasures in the maze and number of treasures that you can take. After that, there are T lines. Each line contains two numbers representing the position of the treasure in the maze. The input may contain multiple test cases and ends with three zeros for N, T and S.

Output

Each test case produces one line of output. This line should contain the output serial no as shown in the sample output and a number representing the minimum cost which is required to collect the treasures.

Sample Input

444
20
21
22
02
442
20
21
22
02
000

Sample Output

Case 1: 10
Case 2: 6

