Given a list of n real numbers, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the mean is defined as

$$
m=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

The standard deviation is defined as the square root of

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}
$$

Given n and a random number generator seed, compute the standard deviation of the first n numbers returned by the generator.

The generator function is given below. I apologize to all those for whom C is not a native language.

```
unsigned long long seed;
long double gen()
{
    static const long double Z = ( long double )1.0 / (1LL<<32);
    seed >>= 16;
    seed &= ( 1ULL << 32 ) - 1;
    seed *= seed;
    return seed * Z;
}
```


Input

The first line of input gives the number of cases, N (at most 40). N test cases follow. Each one is a line containing an integer, $n(1 \leq n \leq 10,000,000)$, and an integer, seed $\left(0 \leq\right.$ seed $\left.<2^{64}\right)$.

Output

For each test case, output one line containing 'Case \#x:' followed by the standard deviation of the first n numbers returned by gen() after seed is initialized to the given value. Round the answer to 5 decimal places. Answers with absolute error of at most 10^{-4} will be deemed correct.

If you need a hint, read the problem again.

Sample Input

5
216777216
24294967296
100000000
22147483648
10000382759482784958

Sample Output

Case \#1: 0.00001
Case \#2: 0.00000
Case \#3: 0.00000
Case \#4: 0.09375
Case \#5: 1283729051.97967

