Every Friday night, Alice, Clara and Mary go to Koerner's pub to relax after a long week. At the pub, lots of guys ask them for their phone numbers. In fact, the three ladies are so popular that they have started counting the number of times each one is asked for her phone number during one evening. On day i, Alice, Clara and Mary were asked A_{i}, C_{i} and M_{i} times, respectively. 100 Fridays have passed, and the records were lost, but there are 3 things Alice still remembers.

1. X of the 100 days, A_{i} was equal to C_{i}.
2. Y of the 100 days, C_{i} was equal to M_{i}.
3. Z of the 100 days, A_{i} was equal to M_{i}.

How many time were A_{i}, C_{i} and M_{i} all equal?

Input

The first line of input gives the number of cases, $N . N$ test cases follow. Each one contains the integers X, Y and Z on a line.

Output

For each test case, output one line containing 'Case \#x:' followed by 'Between A and B times.', where A and B are the lowest and highest number of times that A_{i}, C_{i} and M_{i} could have been equal. If the situation is impossible, print 'The records are faulty.' instead.

Sample Input

$$
5
$$

505050
10010099
1005050
1015050
100100100

Sample Output

Case \#1: Between 25 and 50 times.
Case \#2: The records are faulty.
Case \#3: Between 50 and 50 times.
Case \#4: The records are faulty.
Case \#5: Between 100 and 100 times.

