Consider recurrent functions of the following form:

$$
f(n)=a_{1} f(n-1)+a_{2} f(n-2)+a_{3} f(n-3)+\ldots+a_{d} f(n-d) \text {, for } n>d \text {, }
$$

where $a_{1}, a_{2}, \ldots, a_{d}$ are arbitrary constants.
A famous example is the Fibonacci sequence, defined as: $f(1)=1, f(2)=1, f(n)=f(n-1)+$ $f(n-2)$. Here $d=2, a_{1}=1, a_{2}=1$.

Every such function is completely described by specifying d (which is called the order of recurrence), values of d coefficients: $a_{1}, a_{2}, \ldots, a_{d}$, and values of $f(1), f(2), \ldots, f(d)$. You'll be given these numbers, and two integers n and m. Your program's job is to compute $f(n)$ modulo m.

Input

Input file contains several test cases. Each test case begins with three integers: d, n, m, followed by two sets of d non-negative integers. The first set contains coefficients: $a_{1}, a_{2}, \ldots, a_{d}$. The second set gives values of $f(1), f(2), \ldots, f(d)$.

You can assume that: $1 \leq d \leq 15,1 \leq n \leq 2^{31}-1,1 \leq m \leq 46340$. All numbers in the input will fit in signed 32 -bit integer.

Input is terminated by line containing three zeroes instead of d, n, m. Two consecutive test cases are separated by a blank line.

Output

For each test case, print the value of $f(n)(\bmod m)$ on a separate line. It must be a non-negative integer, less than m.

Sample Input

11100
2
1

210100
11
11

3214748364712345
12345678012345
123

000

Sample Output

1
55
423

