
Consider recurrent functions of the following form:

f(n) = a1f(n− 1) + a2f(n− 2) + a3f(n− 3) + . . .+ adf(n− d), for n > d,

where a1, a2, . . . , ad are arbitrary constants.
A famous example is the Fibonacci sequence, defined as: f(1) = 1, f(2) = 1, f(n) = f(n − 1) +

f(n− 2). Here d = 2, a1 = 1, a2 = 1.
Every such function is completely described by specifying d (which is called the order of recurrence),

values of d coefficients: a1, a2, . . . , ad, and values of f(1), f(2), . . . , f(d). You’ll be given these numbers,
and two integers n and m. Your program’s job is to compute f(n) modulo m.

Input

Input file contains several test cases. Each test case begins with three integers: d, n, m, followed by
two sets of d non-negative integers. The first set contains coefficients: a1, a2, . . . , ad. The second set
gives values of f(1), f(2), . . . , f(d).

You can assume that: 1 ≤ d ≤ 15, 1 ≤ n ≤ 231 − 1, 1 ≤ m ≤ 46340. All numbers in the input will
fit in signed 32-bit integer.

Input is terminated by line containing three zeroes instead of d, n, m. Two consecutive test cases
are separated by a blank line.

Output

For each test case, print the value of f(n)(modm) on a separate line. It must be a non-negative integer,
less than m.

Sample Input

1 1 100

2

1

2 10 100

1 1

1 1

3 2147483647 12345

12345678 0 12345

1 2 3

0 0 0

Sample Output

1

55

423

