A bitstring, whose length is one less than a prime, might be \mathbf{magic} . 1001 is one such string. In order to see the \mathbf{magic} in the string let us append a non-bit \mathbf{x} to it, regard the new *thingy* as a cyclic string, and make this square matrix of bits

each bit	1001
every 2^{nd} bit	0110
every 3^{rd} bit	0110
every 4^{th} bit	1001

This matrix has the same number of rows as the length of the original bitstring. The m-th row of the matrix has every m-th bit of the original string starting with the m-th bit. Because the enlarged thingy has prime length, the appended \mathbf{x} never gets used.

If each row of the matrix is either the original bitstring or its complement, the original bitstring is **magic**.

Input

Each line of input (except last) contains a prime number $p \leq 100000$. The last line contains '0' and this line should not be processed.

Output

For each prime number from the input produce one line of output containing the lexicographi-

cally smallest, non-constant **magic** bitstring of length p-1, if such a string exists, otherwise output 'Impossible'.

10000100000100101010101

1011010101001111010011000111110100100

Sample Input

5

3 17

47

2 79

0

Sample Output

0110

01

0010111001110100

Impossible