Let $\mathrm{A}:=\{=,-, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$.
We assume that $*$ represent the operation of concatenation between strings.
We define the set of formulas over A recursively as follows:

- If X belongs to $A \backslash\{=,-\}$ then X is formula (variable).
- IF X is a formula, so is $X *-$.
- If X and Y are formulas, so is: $X * Y *=$.

These formulas are understood as logical formulas with connectives - for negation,$=$ for equivalence and $A \backslash\{=,-\}$ as variables. That is $=$ and - are not variables. Also, variables a and A are considered different. Similarly b is different to B and so on.

Of course our formulas are given in Reverse Polish Notation (RPN). We can evaluate a formula for a given boolean input $\{0,1\}$ and the output is either 0 or 1 as usual.

A formula is a tautology if it evaluates to 1 for every input. For example ' $a \mathrm{a}=$ ' is a tautology while ' $\mathrm{aa}=-$ ' is not. Note that ' $\mathrm{a} a=$ ' represents the formula ' $a=a$ ' in the standard infix notation and ' $\mathrm{aa}=-$ ' represents the formula ' $-[a=a]$ '.

Input

The first line is a natural number N less than 100 . Then, there are N lines, each one is a string over A. Every string is of size less than 200 characters.

Output

You must display N lines, each one with 3 possible answers: incorrect, tautology or formula. Answer number i gives the output of string number i. The output is 'incorrect' if the input string is not a formula. The output is 'formula' if the input string is a formula that is not a tautology. The output is 'tautology' if the input string is a formula that is a tautology.

Note:

Perhaps some students have no idea on how to evaluate a formula in RPN form. However I assume that she/he knows how to do it in the standard form, hence I need only to describe how to convert a RPN formula into a standard infix form. We define $f(X)$ the translation of a RPN formula X by recursion as follows:

We assume that X, Y, Z represent formulas.

1. If X is a variable then $f(X):=X$.
2. If X is of the form $Y *-$ then $f(X):=[*-* f(Y) *]$.
3. If X is of the form $Y * Z *=$ then $f(X):=[* f(Y) *=* f(Z) *]$.
where [and] are parenthesis symbols (not needed in a RPN formula).
Just in case, I include the truth tables for $=$ and - .
The truth table for $=$ is:

\mathbf{A}	\mathbf{B}	$\mathbf{A}=\mathbf{B}$
0	0	1
0	1	0
1	0	0
1	1	1

The truth table for - is:

\mathbf{A}	$\mathbf{- A}$
0	1
1	0

Good luck!

Sample Input

3
aa=
aa=-
ab

Sample Output

tautology

formula
incorrect

