A mad researcher was trying to get fund for his research project but it is a pity that after a year he was able to collect $500 \$$ only. So all his research work has gone to ashtray. The mad researcher now wants his revenge, so he wants you to solve his unfinished research problem within a very limited time. You will be happy to know that his research is related to Eulers phi function.

Euler's phi (or totient) function of a positive integer n is the number of integers in $\{1,2,3, \ldots, n\}$ which are relatively prime to n. This is usually denoted as $\phi(n)$. The table below shows the value of phi function for first few numbers.

integer n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8

Given the value of n, it is very easy to find the value of $\phi(n)$ using the formula below:

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) \quad / / \text { Here } p \text { is prime }
$$

According to this formula $\phi(12)=\phi\left(2^{2} * 3\right)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=12 * \frac{1}{2} * \frac{2}{3}=4$.
But your task is not quite straightforward, given the value of $\phi(n)$ you will have to find the minimum possible value of n.

Input

The input file contains at most 100 lines of input. Each line contains a positive integer $p h i_{n}(1 \leq$ $p h i_{n} \leq 100000000$). Input is terminated by a line where $p h i_{n}=0$. This line should not be processed.

Output

For each line of input produce one line of output. This line contains the serial of output followed by two integers $p h i_{n}$ and n. The first integer is the integer taken as input and the second integer is the minimum possible value of n, for which $\phi(n)=p h i_{n}$. All the input numbers will be such that for all given input there will be a possible value of n less than 200000000 .

Sample Input

12

24
2280960
5000000
0

Sample Output

Case 1: 1213
Case 2: 2435
Case 3: 22809602283989
Case 4: 50000006265625

