A graph, G, consists of a finite set of vertices, V, and a set of edges, E, where each edge is a set of 2 vertices $\{\mathrm{u}, \mathrm{v}\}$. A walk in G is a finite sequence of vertices $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}\right)$, such that for each pair $\left(\mathrm{v}_{i-1}, \mathrm{v}_{i}\right)$ for i in $[2, \mathrm{k}],\left\{\mathrm{v}_{i-1}, \mathrm{v}_{i}\right\}$ is in E . This is called a "walk from v_{1} to v_{k} ". If V is a set of integers, then any two walks in G can be compared lexicographically; for example, the walk $(3,5,6,2$, 8) is smaller than the walk ($3,5,6,5,7$). A walk, W , from a to b is lexicographically smallest if there is no other walk from a to b in G that is smaller than W . A drive is a walk $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}\right)$, where no edge is used twice consecutively. That is, for all i from 2 up to $k-1, \mathrm{v}_{i-1}$ is not equal to v_{i+1}.

Given G and a start vertex, s, your task is to find the lexicographically smallest drives from s to each vertex in G.

Input

The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containing the integers n, m and $s .(0 \leq n \leq 100,0 \leq m \leq 4950)$. The next m lines will list the edges of G. V is the set $\{0,1, \ldots, n-1\} . s$ is in V.

Output

For each test case, output the line 'Case \#x:', where x is the number of the test case. Then print n lines, line i listing the lexicographically smallest drive from s to i using single spaces to separate consecutive vertices. If there is no such drive, print 'No drive.' Put an empty line after each test case.

Sample Input

```
2
645
5
2 5
4
3 1
4 0
0 1
12
0}
0
```


Sample Output

```
Case #1:
```

50
No drive.
52
No drive.
504
5
Case \#2:
0
01
012
No drive.

