We have two rows. There are a dots on the top row and b dots on the bottom row. We draw line segments connecting every dot on the top row with every dot on the bottom row. The dots are arranged in such a way that the number of internal intersections among the line segments is maximized. To achieve this goal we must not allow more than two line segments to intersect in a point. The intersection points on the top row and the bottom are not included in our count; we can allow more than two line segments to intersect on those two rows. Given the value of a and b, your task is to compute $P(a, b)$, the number of intersections in between the two rows. For example, in the following figure $a=2$ and $b=3$. This figure illustrates that $P(2,3)=3$.

Input

Each line in the input will contain two positive integers $a(0<a \leq 20000)$ and $b(0<b \leq 20000)$. Input is terminated by a line where both a and b are zero. This case should not be processed. You will need to process at most 1200 sets of inputs.

Output

For each line of input, print in a line the serial of output followed by the value of $P(a, b)$. Look at the output for sample input for details. You can assume that the output for the test cases will fit in $\mathbf{6 4}$-bit signed integers.

Sample Input

22
23
33
00

Sample Output

Case 1: 1
Case 2: 3
Case 3: 9

