The world-famous architect Mr. Fru from Reus plans to build a colossal pillar H units high. Mr. Fru has n black pieces with heights b_{1}, \ldots, b_{n} and m white pieces with heights w_{1}, \ldots, w_{m}. According to his design the pillar must have four pieces: a black piece on its bottom, a white piece above it, another black piece above, and finally a white piece on the top of the pillar.

Mr. Fru wishes to know which of the combinations of four pieces with total height H is the most stable. Given two combinations $A=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ and $B=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ (where a_{1} denotes the height of the bottom (black) piece of the pillar A, a_{2} denotes the height of the second (white) piece of A, and so on), A is more stable than B if $a_{1}>b_{1}$, or if $a_{1}=b_{1}$ but $a_{2}>b_{2}$, etc. (In other words, A is more stable than B if and only if the sequence of heights of the pieces of A is lexicographically larger than the sequence of heights of the pieces of B.)

Write a program such that, given the desired height H of the pillar, the heights of the black pieces and the heights of the white pieces, computes which pillar (if any) of height exactly H would be the most stable.

Input

Input consists of zero ore more test cases. Each test case has on the first line H, an integer between 1 and $4 * 10^{8}$. The second and third lines of each test consist respectively of the sequence b_{1}, \ldots, b_{n} and of the sequence w_{1}, \ldots, w_{m}. A blank line separates two consecutive test cases. You can assume $2 \leq n \leq 100$ and $2 \leq m \leq 100$, and that no piece has a height larger than 10^{8}.

Output

For every test case, print one line with the sequence of heights of the pieces of the most stable pillar. If no solution exists, print 'no solution'.

Sample Input

100
2020
30103050

100
20104
503045

Sample Output

20502010
no solution

