A line segment is given in the plane by its endpoints $a=\left(a_{x}, a_{y}\right)$ and $b=\left(b_{x}, b_{y}\right)$, where a is not equal to b. The segment has been moved either by a counterclockwise rotation around some point or by a translation and the final coordinates of its endpoints are known $a^{\prime}=\left(a_{x}^{\prime}, a_{y}^{\prime}\right)$ and $b^{\prime}=\left(b_{x}^{\prime}, b_{y}^{\prime}\right)$, where endpoint a^{\prime} corresponds to the original endpoint a, and b^{\prime} to b. Your task is to decide whether the segment was rotated or translated and to report your findings.

Input

Your program should read input from standard. Each line of the input contains 8 floating-point mumbers, separated by spaces and giving the values of $a_{x}, a_{y}, a_{x}^{\prime}, a_{y}^{\prime}, b_{x}, b_{y}, b_{x}^{\prime}, b_{y}^{\prime}$. A line containing 8 zeros terminates the input and should not be processed.

Output

For each line of input produce one line of output in the format given in the sample, where floatingpoint numbers are printed to 1 digits of the fractional part. The reported angle of rotation should be nonnegative and smaller than 360 . In your computations, two floating-point numbers differing by less than $10 \mathrm{e}^{-8}$ should be considered equal. Note that when the segment has not changed its position then report No move.

Sample Input

02132031
02201331
2.1002 .131 -1 3
2.102 .92380808040 .736605901102 .1 -0.0347392304 0.9954452513
$\begin{array}{lllllll}5 & 1 & 2 & -2 & 10 & 1 & -7\end{array}$
$\begin{array}{llllllll}1 & 17 & 1 & 17 & -14 & -14 & -14 & -14\end{array}$
00000000

Sample Output

Translation by vector $\langle 1.0,1.0\rangle$.
Translation by vector $\langle 2.0,-2.0\rangle$.
Rotation around ($0.0,0.0$) by 90.0 degrees counterclockwise.
Rotation around (1.5,1.5) by 40.0 degrees counterclockwise.
Rotation around (2.0,1.0) by 270.0 degrees counterclockwise.
No move.

