A fantastic sequence a_{i} is defined in the following way: a_{0}, \ldots, a_{k-1} are given integers, and the subsequent elements are defined by the linear recurrence relation

$$
a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-1}\right)+c_{k+1} \cdot(n \geq k)
$$

Here c_{1}, \ldots, c_{k+1} are known integers.
You have to find $a_{n} \bmod m$, where n and m are given.

Input

The first line of the input contains the number of the test cases, which is at most 20 . The descriptions of the test cases follow. The first line of a test case description contains three integers $k(0 \leq k \leq 20)$, $m\left(1 \leq m<2^{31}\right)$, and $n\left(0 \leq n<2^{31}\right)$ separated by spaces. The second line contains the integers c_{1}, \ldots, c_{k+1} separated by spaces $\left(-2^{31} \leq c_{i}<2^{31}\right)$. The third line contains the integers a_{0}, \ldots, a_{k-1} separated by spaces ($-2^{31} \leq a_{i}<2^{31}$). The test cases are separated by blank lines.

Output

For each test case in the input, output one nonnegative integer: $a_{n} \bmod m$. Print a blank line between test cases.

Sample Input

1

21010
110
11

Sample Output

9

