A fantastic sequence a_i is defined in the following way: a_0, \ldots, a_{k-1} are given integers, and the subsequent elements are defined by the linear recurrence relation

$$a_n = \left(\sum_{i=1}^k c_i a_{n-1}\right) + c_{k+1} \cdot (n \ge k)$$

Here c_1, \ldots, c_{k+1} are known integers.

You have to find $a_n \mod m$, where n and m are given.

Input

The first line of the input contains the number of the test cases, which is at most 20. The descriptions of the test cases follow. The first line of a test case description contains three integers k ($0 \le k \le 20$), m ($1 \le m < 2^{31}$), and n ($0 \le n < 2^{31}$) separated by spaces. The second line contains the integers c_1, \ldots, c_{k+1} separated by spaces ($-2^{31} \le c_i < 2^{31}$). The third line contains the integers a_0, \ldots, a_{k-1} separated by spaces ($-2^{31} \le a_i < 2^{31}$). The test cases are separated by blank lines.

Output

For each test case in the input, output one nonnegative integer: $a_n \mod m$. Print a blank line between test cases.

Sample Input

1

2 10 10

1 1 0

1 1

Sample Output