In the course of Linear Algebra, the following theorem is proved:
Theorem. Let A be a square matrix of size n with entries in C. There are square matrices T and J of size n such that

$$
A=T^{-1} J T, \quad J=\left(\begin{array}{cccc}
J_{1} & \emptyset & \emptyset & \emptyset \\
\emptyset & J_{2} & \emptyset & \emptyset \\
\emptyset & \emptyset & \ddots & \emptyset \\
\emptyset & \emptyset & \emptyset & J_{k}
\end{array}\right)
$$

where J_{i} are Jordan cells:

$$
J_{i}=\left(\begin{array}{cccccc}
\lambda_{i} & 1 & 0 & 0 & \ldots & 0 \\
0 & \lambda_{i} & 1 & 0 & \ldots & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & \ldots & \ldots & \lambda_{i} & 1 \\
0 & \ldots & \ldots & \ldots & \ldots & \lambda_{i}
\end{array}\right)
$$

Here λ_{i} is an eigenvalue of A.

The decomposition $A=T^{-1} J T$, where J is of the form described above, is called a Jordan decomposition of A. The Jordan decomposition of a matrix may fail to be unique.

Given a matrix A, we can define the matrix $\exp A$ in the following way: if $A=T^{-1} J T$ is a Jordan decomposition of A, then $\exp A=T^{-1} J^{\prime} T$

$$
J^{\prime}=\left(\begin{array}{ccc}
J_{1}^{\prime} & \text { Ø } & \text { Ø } \\
\text { Ø } & \ddots & \text { Ø } \\
\text { Ø } & \text { Ø } & J_{k}^{\prime}
\end{array}\right), \quad J_{i}^{\prime}=\left(\begin{array}{cccc}
\frac{e^{\lambda} i}{0!} & \ldots & \ldots & \frac{e^{\lambda} i}{m_{i}!} \\
0 & \frac{e^{y} i}{0!} & \cdots & \frac{e^{\lambda} i}{\left(m_{i}-1\right)!} \\
\ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & \frac{e^{\lambda} i}{0!}
\end{array}\right)
$$

Here m_{i} is the size of J_{i}. If $k \leq l$, then the number in the k-th row and l-th column of J_{i}^{\prime} is

$$
j_{k l}=\frac{e^{\lambda i}}{(l-k)!}
$$

otherwise it is 0 .
It can be proved that $\exp A$ is independent of the Jordan decomposition of A used. It can also be proved that if A is real-valued, then $\exp A$ is also real-valued. Your task is: given a matrix A, compute $\exp A$.

For example, if

$$
A=\left(\begin{array}{ll}
3 & 0 \\
1 & 3
\end{array}\right)
$$

then

$$
J=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right), T=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right), J^{\prime}=\left(\begin{array}{cc}
e^{3} & e^{3} \\
0 & e^{3}
\end{array}\right)
$$

and

$$
\exp A=\left(\begin{array}{cc}
e^{3} & 0 \\
e^{3} & e^{3}
\end{array}\right) \approx\left(\begin{array}{cc}
20.086 & 0 \\
20086 & 20086
\end{array}\right)
$$

Input

The first line of the input contains the number of the test cases, which is at most 15 . The descriptions of the test cases follow. The first line of a test case description contains one integer $N(1 \leq N \leq 8)$, denoting the size of the matrix A. Each of the next N lines contains N integers separated by spaces, describing the matrix A. It is guaranteed that the entries of A are between 0 and 5 . The test cases are separated by blank lines.

Output

For each test case in the input, output N lines, each containing N integers separated by spaces, describing the matrix $\exp A$. The numbers must have at least three digits after the decimal point. Print a blank line between test cases.

Sample Input

Sample Output

20.0860 .000
20.08620 .086

