In the course of Linear Algebra, the following theorem is proved:

Theorem. Let A be a square matrix of size n with entries in C. There are square matrices
T and J of size n such that
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Here \; is an eigenvalue of A.

The decomposition A = T—'JT , where J is of the form described above, is called a Jordan
decomposition of A. The Jordan decomposition of a matrix may fail to be unique.

Given a matrix A, we can define the matrix exp A in the following way: if A = T—'JT is a Jordan
decomposition of A, then exp A =T~ 1J'T
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Here m; is the size of J;. If k <, then the number in the k-th row and I-th column of J/ is

Jkl = (l—k:)!’

otherwise it is 0.

It can be proved that exp A is independent of the Jordan decomposition of A used. It can also be
proved that if A is real-valued, then exp A is also real-valued. Your task is: given a matrix A, compute
exp A.
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Input

The first line of the input contains the number of the test cases, which is at most 15. The descriptions
of the test cases follow. The first line of a test case description contains one integer N (1 < N < 8),
denoting the size of the matrix A. Each of the next N lines contains N integers separated by spaces,
describing the matrix A. It is guaranteed that the entries of A are between 0 and 5. The test cases are
separated by blank lines.

Output

For each test case in the input, output IV lines, each containing N integers separated by spaces,
describing the matrix exp A. The numbers must have at least three digits after the decimal point.
Print a blank line between test cases.

Sample Input
2

w
o

Sample Output
20.086 0.000
20.086 20.086

2.718 13.591
0.000 2.718



