How much does winning ACM depend on practice?
We assume that $p$, the probability that a given team will win a given contest, is related to $n$, the number of practice problems solved by the team prior to the contest. This relationship is modelled by the logistic formula

$$
\log (p /(1-p))=a+b n
$$

for some $a$ and $b$. Your job is to find $a$ and $b$ such that the formula most accurately reflects a set of observed results.

Each observation consists of $n$ and $w . n$ is the number of practice problems solved by some team prior to a contest, and $w$ is 1 if the team wins the contest, 0 if it does not.

Given $a, b$, and $n$ the formula above may be used to compute $p$, the estimated probability that $w=1$. The likelihood of a particular observation is $p$ if $w=1$ and $1-p$ if $w=0$; The likelihood of a set of observations is the product of the likelihoods of the individual observations.

You are to compute the maximum likelihood estimate for $a$ and $b$. That is, the values of $a$ and $b$ for which the likelihood of a given set of observations is maximized.


## Input

The input contains several test cases followed by a line contatining 0 . Each test case begins with $1<k \leq 100$, the number of observations that follow. Each observation consists of integers $0 \leq n \leq 100$ and $0 \leq w \leq 1$. The input will contain at least two distinct values of $n$ and of $w$.

## Output

For each test case, output a single line containing $a$ and $b$, rounded to four digits to the right of the decimal.

## Sample Input

20
00
00
00
00
10
10
10
11
20
20
21
21
30
31
31
31
41
41
41
41
0

## Sample Output

