Some people believe that 13 is an unlucky number. So they always want to avoid the number 13 . In some buildings you will find that there is no 13 -th floor. After 12 -th floor there is 14 -th floor. In a number if there is no 13 (i.e. no " 1 " is followed by a " 3 ") then we may call it a super lucky number. For example, 12345 is a super lucky number. But if any number contains 13 then it is not a super lucky number such as 13254 or 21345 . Given the number of digits N in a number and a base B, you have to find out how many super lucky numbers are possible with N digits in the base B. B should be greater than 3 , as because the digit 3 is present in only for base 4 or more. Note that leading 0 s are not significant. So, 011 is not a valid three digit number.

Input

There will be several lines in the input each containing two positive integers B and N, where $4 \leq B \leq$ 128 and $N \leq 100$. A pair of zero will indicate the end of input and it should not be processed.

Output

For each line in the input print the count of super lucky numbers of N digits in the base B.

Sample Input

42
53
00

Sample Output

