In this problem your job is to find the distance between two lines or a line and a line segment or two line segments. Suppose we have two points $\mathbf{A}\left(x_{1}, y_{1}\right)$ and $\mathbf{B}\left(x_{2}, y_{2}\right)$ on a two dimensional Cartesian plane. If we connect \mathbf{A} and \mathbf{B} then we get line segment $\mathbf{A B}$. But if we connect $\mathbf{A B}$ and extend it on both side at infinite length then we get line AB.

Input

The input file contains several sets of inputs. The description of each set of input is given below:
The description for each set of input is given in two lines. Each line contains four integers and a string. First line contains $x_{1}, y_{1}, x_{2}, y_{2}$ and S_{1} and the second line contains $x_{3}, y_{3}, x_{4}, y_{4}$ and S_{2}. The value of S_{1} and S_{2} can be either 'L' or 'LS' which stands for "Line" and "Line-segment" respectively. $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the endpoints of first line segment or they are just two different points on the first line depending on the value of S_{1}. The same story applies for the second input line for this set. Input is terminated by a set where the value of S_{1} and S_{1} is 'END'. This set should not be processed. Point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are always different. Similarly point $\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are also always different. All the integers in the input file have absolute value less than $\mathbf{1 0 1 .}$

Output

For each set of input you should produce one line of output which contains a single floating-point number indicating the distance between the two lines or line segments or the distance between one line and one line segment. This floating-point number contains five digits after the decimal point. Errors less than $2 \mathrm{e}-5$ will be ignored.

Sample Input

10	10	20	20	L
-10	-10	19	19	L
10	10	12	13	LS
11	11	19	20	LS
10	10	12	12	END
11	11	23	34	END

Sample Output

0.00000
0.27735

